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Abstract. This paper is concerned with the optimal model reduction for linear discrete periodic
time-varying systems and digital filters. Specifically, for a given stable periodic time-varying model,
we shall seek a lower order periodic time-varying model to approximate the original model in an
optimal H2 norm sense. By orthogonal projections of the original model, we convert the optimal
periodic model reduction problem into an unconstrained optimization problem. Two effective al-
gorithms are then developed to solve the optimization problem. The algorithms ensure that the H2
cost decreases monotonically and converges to an optimal (local) solution. Numerical examples are
given to demonstrate the computational efficiency of the proposed method. The present paper extends
the optimal model reduction for linear time invariant systems to linear periodic discrete time-varying
systems.
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1. Introduction

Cyclostationary processes arise in many different fields ranging from economics
and management, to biology, communications, signal processing and control of
multirate plants [13, 14, 16, 18, 22, 24, 31]. In communications and signal pro-
cessing [4], cyclostationary characteristics appear, for example, in bauded data
transmission, amplitude-modulated signals and video signals. Naturally, periodic
models play a key role for analysis, design and simulation of cyclostationary pro-
cesses. Furthermore, periodic filters and controllers have been used to improve the
control and filtering performance for time-invariant systems [5, 14]. On the other
hand, due to the complexity of engineering systems as well as the requirement for
better control and filtering performance, quite often we are faced with high order
periodic models which are undesirable due to the difficulty in analysis, computa-
tional inefficiency and high implementation cost. Therefore, the problem of model
reduction for periodic systems is of considerable interest and practical importance.

The model reduction problem has been extensively investigated for linear time
invariant systems and a number of results have been presented. Most of the existing
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work is for continuous-time models and there are basically two approaches to the
model reduction, namely the error-bound based approach and optimality-based
approach. A well known error-bound based approach is the so-called balanced
truncation proposed by Moore [20], (see, also, [3, 8, 21], [25], and the references
therein). Recently, the H∞ and H2 model reduction using linear matrix inequalities
has also been studied in [6, 10]. For the optimality-based approach, work has been
concerned with minimizing the L2-norm of the discrepancy between the original
model and a reduced one, (see, e.g., [11, 12, 26], [27]). These works basically de-
rive first order necessary conditions for optimality but have difficulties in efficiently
computing the lower order optimal model. In addtion, [23] proposed an order re-
duction algorithm and established its convergence for single-input single-output
system.

The optimal model reduction under the H2 specification is to minimize the root
mean square value of the model reduction error over the entire frequency spec-
trum. An algorithm was recently presented in [30] for computing a continuous
time locally optimal H2 reduced model, where it is indicated that whether a global
minimum of the H2 model reduction optimization exists is still unclear. Although
the answer to this question for the discrete time systems is positive [2], the optim-
ization problem is known to be non-convex and is equivalent to a reduced order
output feedback optimal control problem. To our knowledge, this is still an open
problem and there lacks of global optimization method for analytically solving or
efficiently computing the problem in the general multi-input and multi-output case.

In the context of periodic systems, the problem of H2 model reduction becomes
much harder due to the difficulties caused by the time-varying dynamics. Although
there exist methods to convert periodic systems into time-invariant models [14, 17,
18], they are not directly applicable to the model reduction problem because of the
severe causality constraint and difficulties in representing the time-varying state di-
mension and converting the time-invariant model back into the periodic realization.
It is worth noting that there is no guarantee on the order of periodic realization of
the obtained lower order time-invariant model even if the time-invariant model can
be converted into an equivalent periodic one. Therefore, there is little result known
in periodic system model reduction.

In this paper, we consider the model reduction problem for linear periodic dis-
crete time systems and digital filters under the H2 performance specification. By
projecting the original periodic model using orthogonal matrices and applying the
well known lifting technique for periodic systems [14, 18], the H2 optimal periodic
model reduction problem is formulated as an unconstrained optimization problem.
Based on the gradient flow of the cost function and the first order condition for
minimality of calculus, two algorithms for computing the H2 optimal reduced order
model are given. These algorithms are simple in computation and asymptotically
converge to a local optimal solution. In addition, the algorithms allow the state
dimension of the reduced order model to be specified to be time-varying. Given that
there has been no global results for the H2 optimal model reduction for both linear
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time-invariant and periodic systems available, our local result makes an original
contribution to this area.

This paper is organized as follows. Section 2 formulates the order reduction
problem for discrete time periodic systems with time-varying order. Section 3
derives the H2 cost function and its gradient for the optimal order reduction. A
continuous time algorithm and a discrete iterative algorithm with convergence ana-
lysis are presented in Section 4 for the H2 optimal order reduction. In Section 5, two
examples are presented with numerical computation and simulation to demonstrate
the effectiveness of the proposed model reduction method.

2. Problem formulation

2.1. LINEAR PERIODIC SYSTEMS

Consider an N-periodic discrete-time system y = �u in the state space equation
form:

(�) : xk+1 = Akxk + Bkuk (2.1)

yk = Ckxk + Dkuk (2.2)

where xk ∈ Rnk is the state with time-varying dimension nk, uk ∈ Rm is the
input and yk ∈ Rp is the output of the system, Ak ∈ Rnk+1×nk , Bk ∈ Rnk+1×m,
Ck ∈ Rp×nk and Dk ∈ Rp×m are N-periodic matrices of the system satisfying

Ak+N = Ak, Bk+N = Bk, Ck+N = Ck, Dk+N = Dk (2.3)

Let the transition matrix of the N-periodic system � be

�i,j =
{
Ai−1Ai−2 · · ·Aj , i > j

I, i = j
(2.4)

It is well known that the periodic system � is stable if and only if all the eigenvalues
of �i+N,i are within the unit circle of the complex plane for all 0 � i � N − 1.

Let ‖ · ‖2 denote the H2 norm of a discrete time system. We define the H2 norm
of the stable N-periodic system � as

‖�‖2 =
√√√√ 1

N

N−1∑
τ=0

m∑
i=1

∞∑
k=0

(�Eiδτ )
∗
(k)(�Eiδτ )(k) (2.5)

where δi = δ(k − i) denotes the Dirac delta function and Ei is the ith column
vector of the m×m identity matrix. This is a commonly used definition for periodic
systems [1], and is an extension of the well known H2 norm for linear time invariant
systems.

We now apply the well known lifting technique [14, 18] to the periodic system
� to obtain the following lifted system �̄k for each k ∈ [0, N − 1].

(�̄k) : x̄kl+1 = Fkx̄
k
l + Gkū

k
l (2.6)

ȳkl = Hkx̄
k
l + Ekū

k
l (2.7)



376 L. XIE ET AL.

where

x̄kl = xk+lN , ūkl =




uk+lN

uk+lN+1
...

uk+(l+1)N−1


 , ȳkl =




yk+lN

yk+lN+1
...

yk+(l+1)N−1


 , (2.8)

Fk = �k+N+1,k, (2.9)

Gk = [
�k+N,k+1Bk �k+N,k+2Bk+1 · · · �k+N,k+N−1Bk+N−2 Bk+N−1

]
, (2.10)

Hk =




Ck

Ck+1�k+1,k
...

Ck+N−1�k+N−1,k


 , (2.11)

Ek =



Dk 0 0 · · · 0 0
Ck+1Bk Dk+1 0 · · · 0 0

Ck+2�k+2,k+1Bk Ck+2Bk+1 Dk+2 · · · 0 0
.
.
.

Ck+N−1�k+N−1,k+1Bk Ck+N−1�k+N−1,k+2Bk+1 · · · Ck+N−1Bk+N−2 Dk+N−1




(2.12)

The lifted system �̄k is an equivalent expression of � in the linear time invariant
state equation form (2.6)-(2.7). Let ‖�̄k‖2 be the H2 norm of the linear time invari-
ant system �̄k following from the standard definition. It is straightforward to verify
that

‖�̄i‖2 = ‖�̄j‖2, ∀ i, j ∈ [0, N − 1] (2.13)

Using (2.5), it is also straightforward to verify

‖�‖2 = 1

N
‖�̄k‖2, ∀k ∈ [0, N − 1] (2.14)

To formulate the optimal order reduction problem for periodic systems, we now
give two useful technical results as follows.

LEMMA 2.1. The N-periodic system � is stable if and only if for any N-periodic
positive definite matrix Qk ∈ Rnk×nk , with Qk = QT

k > 0 and Qk+N = Qk, there
exists a unique N-periodic positive definite solution Pk ∈ Rnk×nk , with Pk = PT

k >

0 and Pk+N = Pk for the following N-periodic Lyapunov equation

AT
k Pk+1Ak − Pk = −Qk, k ∈ [0, N − 1] (2.15)
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Proof: Consecutively substituting Pi = AT
i Pi+1Ai + Qi for i = k + 1, k +

2, · · · , k +N into (2.15) and using Pk+N = Pk, we obtain the following periodic
Lyapunov equation.

�T
k+N,kPk�k+N,k − Pk = −Q̄k, k ∈ [0, N − 1] (2.16)

where

Q̄k = Q̄T
k =

k+N−1∑
i=k

�T
i,kQi�i,k > 0

Apparently, the Lyapunov equation (2.16) is an equivalent expression of (2.15).
By the well known Lyapunov stability result for linear time invariant systems

and stability of the periodic system in terms of the transition matrices �k+N,k for
k ∈ [0, N − 1], the periodic system � is stable if and only if for the given Qk

and, consequently, Q̄k there is a unique solution Pk for the Lyapunov equation
(2.16). Thus the lemma is established following from that (2.15) is an equivalent
expression of (2.16).

LEMMA 2.2. The N-periodic system � is stable if and only if there exists a linear
N-periodic transformation zk = Tkxk, i.e. Tk+N = Tk, such that the transformed
N-periodic system

zk+1 = Tk+1AkT
−1
k zk

satisfies ‖Tk+1AkT
−1
k ‖ < 1, k ∈ [0, N − 1].

Proof: If the periodic system � is stable, let the solution Pk for the Lyapunov
equation (2.15) be written as Pk = T T

k Tk, for k ∈ [0, N − 1]. Pre-multiplying and
post-multiplying (2.15) by T −T

k and T −1
k , respectively, yield(

Tk+1AkT
−1
k

)T (
Tk+1AkT

−1
k

)
< I

It follows that

‖Tk+1AkT
−1
k ‖ < 1

On the other hand, it is simple to show that if the system is unstable there exists
no state transformation zk = Tkxk such that ‖Tk+1AkT

−1
k ‖ < 1 for k ∈ [0, N − 1]

is satisfied.
Throughout this paper, we assume that the periodic system � is stable. In view

of Lemma 2.2, without loss of generality, we further assume that the state matrix
of � satisfies ‖Ak‖ < 1 for k ∈ [0, N − 1].
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2.2. H2 OPTIMAL MODEL REDUCTION FOR PERIODIC SYSTEMS

We now state the H2 optimal model reduction problem for periodic systems as: For
the given N-periodic system � with periodically time-varying order nk and for a
given desirable reduced periodically time-varying order n̂k � nk with

∑N−1
k=0 n̂k <∑N−1

k=0 nk, find an N-periodic model �̂ with the reduced periodically time-varying
order n̂k of the following form such that ‖� − �̂‖2 is minimized.

(�̂) : x̂k+1 = Âkx̂k + B̂kuk (2.17)

ŷk = Ĉkx̂k + D̂kuk (2.18)

where x̂k ∈ Rn̂k is the state and and Âk+N = Âk ∈ Rn̂k+1×n̂k , B̂k+N = B̂k ∈
Rn̂k+1×m, Ĉk+N = Ĉk ∈ Rp×n̂k and D̂k+N = D̂k = Dk ∈ Rp×m are matrices of
the reduced order system.

It is noted that the reduced order system has a periodically time-varying state
dimension n̂k. The above problem statement takes into account the most general
case to allow the state dimension to be reduced each time or only at some time and
remain unchanged at some other time. The specific reduced state dimension is at
the designer’s choice.

Let the transition matrix of the reduced N-periodic system �̂ be

�̂i,j =
{
Âi−1Âi−2 · · · Âj , i > j

I, i = j

The lifted system of the reduced order periodic system �̂k, for each k ∈ [0, N −1],
is obtained as

(
¯̂
�k) : ¯̂xkl+1 = F̂k

¯̂xkl + Ĝkū
k
l (2.19)

¯̂ykl = Ĥk
¯̂xkl + Êkū

k
l (2.20)

where

¯̂xkl = x̂k+lN , ūkl =




uk+lN

uk+lN+1
...

uk+(l+1)N−1


 , ȳkl =




yk+lN

yk+lN+1
...

yk+(l+1)N−1


 , (2.21)

F̂k = �̂k+N,k, (2.22)

(2.23)

Ĝk =
[
�̂k+N,k+1B̂k �̂k+N,k+2B̂k+1 · · · �̂k+N,k+N−1B̂k+N−2 B̂k+N−1

]
,

(2.24)
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Ĥk =




Ĉk

Ĉk+1�̂k+1,k
...

Ĉk+N−1�̂k+N−1,k


 , (2.25)

Êk =



Dk 0 0 · · · 0 0
Ĉk+1B̂k Dk+1 0 · · · 0 0

Ĉk+2�̂k+2,k+1B̂k Ĉk+2B̂k+1 Dk+2 · · · 0 0
.
.
.

Ĉk+N−1�̂k+N−1,k+1B̂k Ĉk+N−1�̂k+N−1,k+2B̂k+1 · · · Ĉk+N−1B̂k+N−2 Dk+N−1




(2.26)

The model reduction problem for linear time-invariant systems has been studied
under various performance measures. Commonly used methods for linear time
invariant system model reduction include the balanced truncation [20] and the
Hankel-norm approximation [7]. These methods are error-bound based but are not
optimal in the sense of minimizing certain error specification between the original
model and the reduced order model.

In [12], it has been shown that for an nth order linear time-invariant model
(A,B,C), the optimal rth order H2 reduced model must be of form (UAV,UB,

CV ) where U ∈ Rr×n and V ∈ Rn×r must satisfy the constraints that UAV is
stable and UV = I . These nonlinear constraints impose a formidable difficulty for
efficiently computing the matrix U and V for the optimal model reduction.

To deal with this difficulty, a modified H2 model reduction problem for continu-
ous time systems is considered in [29, 30] where the reduced model is of the form
(UTAU,UB,CU) with the constraint UTU = I . There are a number of valid
reasons for considering the H2 model reduction of this form. Firstly, it includes the
balanced truncation as a special case and provides a reasonably good approxima-
tion to the original model reduction problem; (see [30]). Next, the minimal solution
for the model reduction exists since the set {UTU = I } is compact. Further, the
stability constraint for the reduced order model is removed. Rigorous convergent
algorithms are given in [30] and illustrated by examples.

For linear periodic system model reduction, a Hankel-norm approximation ap-
proach is proposed in [28] where the periodic systems are required to be reversible
and have a constant order, i.e. nk = n, for all k � 0.

In this paper, we consider that the reduced order system �̂ is of the form

Âk = UT
k AkVk, B̂k = UT

k Bk, Ĉk = CkVk (2.27)

where Uk and Vk are N-periodic real matrices from the Stiefel manifolds:

Suk =
{
Uk ∈ Rnk+1×n̂k+1 | UT

k Uk = I
}

(2.28)

Svk =
{
Vk ∈ Rnk×n̂k | V T

k Vk = I
}

(2.29)
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Observe that the set of reduced order models characterized in (2.26) is larger
than that of [30] where only one projection operator is used. Also, the reduced
order periodic system (2.26) is always stable for any Uk ∈ Suk and Vk ∈ Svk under
the assumption ‖Ak‖ < 1. Therefore, there is no stability constraint in computing
the solution for Uk and Vk.

In view of the H2 norm properties (2.13) and (2.14) of the lifted systems, the
H2 optimal model reduction problem for linear periodic systems can be further
formulated in terms of the lifted systems as: find matrices Uk ∈ Suk and Vk ∈ Svk,
k ∈ [0, N − 1] for the reduced order periodic system matrices in (2.26) such that

‖�̄0 − ¯̂
�0‖2 is minimized.

3. The H2 cost function and its gradient

The error model �̄0 − ¯̂
�0 is a linear time invariant system, which has a state-space

realization as follows.

ζl+1 = Fcζl + Gcu
0
l (3.1)

el = Hcζl + Ecu
0
l (3.2)

where ζl =
[
x̄0T
l

¯̂x0T
l

]T
and

Fc =
[
F0 0
0 F̂0

]
, (3.3)

Gc =
[
G0

Ĝ0

]
, (3.4)

Hc = [H0 − Ĥ0], (3.5)

Ec = E0 − Ê0 (3.6)

where F0, G0, H0, E0, F̂0, Ĝ0, Ĥ0 and Ê0 are as given in (2.9)-(2.12) and
(2.22)-(2.25). It is well known [19] that

J(U, V ) = ‖�̄0 − ¯̂
�0(U, V )‖2

2 = J1(U, V ) + J2(U, V ) (3.7)

where

U = (U0, U1, · · · , UN−1) (3.8)

V = (V0, V1, · · · , VN−1) (3.9)

J1(U, V ) = tr(HcPH
T
c ) = tr(GT

c QGc) (3.10)

J2(U, V ) = tr{(E0 − Ê0)
T (E0 − Ê0)} (3.11)

and P and Q satisfy the following Lyapunov equations, respectively.

FcPF
T
c − P + GcG

T
c = 0 (3.12)

FT
c QFc − Q + HT

c Hc = 0 (3.13)
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Note that the matrices P , Q, Fc, Gc, Hc and Ec, J1(U, V ) and J2(U, V ) are dif-
ferentiable functions of (U, V ) and J(U, V ) is a smooth function on the manifold

, = Su0 × Su1 × · · · × Su(N−1) × Sv0 × Sv1 × · · · × Sv(N−1)

It can be shown ([9]) that the tangent space of , at any (U, V ) ∈ , is given by

T(U,V ), = {
(ξ, η) | ξTj Uj + UT

j ξj = 0, ηTj Vk + V T
j ηj = 0, j = 0, 1, · · · ,

(3.14)
N − 1}

where ξj ∈ Rnj+1×n̂j+1 , ηj ∈ Rnj×n̂j , ξ = (ξ1, ξ2, · · · , ξN−1) and η = (η1, η2, · · · ,
ηN−1).

By endowing T(U,V ), with the inner product

< (ξ, η), (ξ
′
, η

′
) >=

N−1∑
j=0

tr
(
ξTj ξ

′
j + ηTj η

′
j

)
, ∀(ξ, η), (ξ ′

, η
′
) ∈ T(U,V ),,

(3.15)

, becomes a Riemannian manifold.
Let the gradient of the H2 cost function J(U, V ) on the tangent space T(U,V ),

be

∇J(U, V ) = [∇JU (U, V ) ∇JV (U, V )] (3.16)

where

∇JU(U, V ) = [∇JU0(U, V ) ∇JU1(U, V ) · · · ∇JUN−1(U, V )
]

(3.17)

∇JV (U, V ) = [∇JV0(U, V ) ∇JV1(U, V ) · · · ∇JVN−1(U, V )
]

(3.18)

In view of (3.4), (3.5), (2.10), (2.11) (2.23) and (2.24), we partition Gc and Hc

as

Gc = [
Gc0 Gc1 · · · Gc(N−1)

]
(3.19)

Hc = [
HT

c0 HT
c1 · · · HT

c(N−1)

]T
(3.20)

For the notational simplicity, let �̂i,j = 0 when i < j and introduce

R1j = AjVjPjF
T
c Q

T
j , S1j = AT

j UjQjFcP
T
j (3.21)

R2j =
(
BjG

T
cj +

j∑
k=1

AjVj�̂j,kB̂k−1G
T
c(k−1)

)
QT

j (3.22)

S2j =
j∑

k=1

AT
j UjQjGc(k−1)B̂

T
k−1�̂

T
j,k (3.23)
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R3j = −
N−1∑
k=j+1

AjVjPjH
T
ckĈk�̂k,j+1 (3.24)

S3j = −

CT

j Hcj +
N−1∑
k=j+1

AT
j Uj�̂

T
k,j+1Ĉ

T
k Hck


PT

j (3.25)

R4j =
N−1∑
k=1

N−1∑
l=j+1

AjVj �̂j,kB̂k−10
T
lkĈl�̂l,j+1 +

N−1∑
k=j+1

Bj0
T
j (k+1)Ĉk�̂k,j+1 (3.26)

S4j =
N−1∑
k=1

N−1∑
l=j+1

AT
j Uj�̂

T
l,j+1Ĉ

T
l 0lkB̂

T
k−1�̂

T
j,k +

j∑
k=1

CT
j 0jkB̂

T
k−1�̂

T
j,k (3.27)

Rj = R1j + R2j + R3j + R4j , Sj = S1j + S2j + S3j + S4j (3.28)

where

Pj = �̂j,0[0 I ]P, Qj = �̂T
N,j+1[0 I ]Q, 0jk = Ĉj �̂j,kB̂k−1 − Cj�j,kBk−1 (3.29)

Using these notations, we present a result on the gradient ∇J(U, V ) in the follow-
ing theorem.

THEOREM 1. The gradient of the H2 cost function J(U, V ) on the tangent space
T(U,V ), satisfies

∇JUj
(U, V ) = 2Rj − Uj(R

T
j Uj + UT

j Rj), ∇JVj (U, V ) = 2Sj − (3.30)

Vj(S
T
j Vj + V T

j Sj ), j ∈ [0, N − 1]
Proof: See Appendix.
It is noted that the gradient on the tangent space ∇J(U, V ) is different from the

gradient of J(U, V ) as a usual function defined on (U, V ) ∈ ,.

4. Algorithms for minimizing the H2 cost function

It is known from calculus that a first order condition for minimality of the H2 cost
function ∇J(U, V ) is

∇JUj
(U, V ) = 0, ∇JVj (U, V ) = 0, (U, V ) ∈ ,, j ∈ [0, N − 1]

Applying Theorem 1 leads to

2Rj − Uj (R
T
j
Uj + UT

j
Rj ) = 0, 2Sj − Vj (S

T
j
Vj + V T

j
Sj ) = 0, (U, V ) ∈ ,, j ∈ [0, N − 1] (4.1)
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In general, the solutions Uj and Vj , j ∈ [0, N − 1], for these equations are not
straightforward and there is no guarantee that a solution for these equations yields a
minimal cost function. To deal with this problem, we use a gradient flow approach
to develop two algorithms in this section for computing U and V to obtain an
optimal reduced order periodic model. The first algorithm is based on solving dif-
ferential matrix equations in continuous time and the second is a discrete recursive
algorithm which is simple as far as implementation is concerned. Convergence
properties will be established for the algorithms.

4.1. THE CONTINUOUS TIME ALGORITHM

It is known that the value of the cost function is decreased along the negative
gradient direction. Thus, we form a gradient flow as follows to approach a minimal
solution (U, V ) ∈ ,:

U̇j = Uj(R
T
j Uj + UT

j Rj) − 2Rj (4.2)

V̇j = Vj(S
T
j Vj + V T

j Sj ) − 2Sj (4.3)

Since the optimization of the cost J(U, V ) over the manifold , is a constrained
optimization problem, we need to ensure that the solution (U, V ) for (4.2) and (4.3)
exists and remains in , for an initial condition (U(0), V (0)) ∈ ,. We give useful
properties of the gradient flow in the following theorem, which will lead to the
implementation of the gradient-based algorithm.

THEOREM 2. For an initial condition (U(0), V (0)) ∈ ,, the solution for the
ordinary differential equations (ODEs) (4.2) and (4.3) satisfy
1. The solution (U(t), V (t)) for (4.2) and (4.3) is unique and stays in , for all

t � 0;
2. The cost J(U, V ) is strictly decreasing to approach the minimum solution in

the sense

J(U(t2), V (t2))− J(U(t1), V (t1)) = −
N−1∑
j=0

∫ t2
t1
Mj(U, V )dt, ∀t2 � t1 � 0 (4.4)

where

Mj(U, V ) =
N−1∑
j=0

{‖UjR
T
j − RjU

T
j ‖2

F + 2‖(UjU
T
j − I )Rj‖2

F

+ ‖VjS
T
j − SjV

T
j ‖2

F + 2‖(VjV
T
j − I )Sj‖2

F

}
� 0 (4.5)

and ‖ · ‖F denotes the Frobenius norm;
3. The derivatives U̇ (t) and V̇ (t) converge to zero, i.e.

lim
t→∞ U̇j (t) = 0, lim

t→∞ V̇j (t) = 0, j ∈ [0, N − 1]
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4. Any solution (U ∗(t), V ∗(t)) for (4.2) and (4.3), such that the cost function
J(U ∗(t), V ∗(t)) is minimal, satisfies

Mj(U
∗, V ∗) = 0

or equivalently,

U ∗
j R

T
j − RjU

∗T
j = 0, V ∗

j S
T
j − SjV

∗T
j = 0, j ∈ [0, N − 1]

Proof: 1) Since , is a compact set, the solution for the ODEs is unique. Using
(4.2) and (4.3), it can be easily shown that

d

dt
(UT

j (t)Uj (t)) = 0 and
d

dt
(V T

j (t)Vj (t)) = 0

Thus, (U(t), V (t)) ∈ , for all t � 0 provided (U(0), V (0)) ∈ ,.
2) The result (4.4) follows immediately from

J̇[U(t), V (t)] = 2
N−1∑
j=0

tr
(
RT
j U̇j + STj V̇j

)

= 2
N−1∑
j=0

tr
{
RT
j UjR

T
j Uj − RT

j Rj + RT
j (UjU

T
j − I )Rj

}

+2
N−1∑
j=0

tr
{
STj VjS

T
j Vj − STj Sj + STj (VjV

T
j − I )Sj

}

= −
N−1∑
j=0

tr
{
(UjR

T
j − RjU

T
j )

T (UjR
T
j − RjU

T
j )

}

+ 2
N−1∑
j=0

tr
{
RT
j (UjU

T
j − I )Rj

}

−
N−1∑
j=0

tr
{
(VjS

T
j − SjV

T
j )

T (VjS
T
j − SjV

T
j )

}

+ 2
N−1∑
j=0

tr
{
STj (VjV

T
j − I )Sj

}

= −
N−1∑
j=0

Mj(U, V )

3) If M(U ∗, V ∗) �= 0, since 0 � J(U(t), V (t)) � J(U(0), V (0)), the integral∫ ∞

0
‖Mj(U, V )‖2

F dt
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must be finite. By the uniform continuity of (U̇ (t), V̇ (t)) for any t � 0, we have

lim
t→∞(UjR

T
j − RjU

T
j ) = 0, lim

t→∞(UjU
T
j − I )Rj = 0,

j ∈ [0, N − 1] (4.6)

lim
t→∞(VjS

T
j − SjV

T
j ) = 0, lim

t→∞(VjV
T
j − I )Sj = 0 j ∈ [0, N − 1](4.7)

These yield

Rj = UjR
T
j Uj = UjU

T
j Rj , Sj = VjS

T
j Vj = VjV

T
j Sj

It then follows from (4.2) and (4.3) that (U̇j (t), V̇j (t)) → 0.
4) If (U ∗(t), V ∗(t)) is a solution such that the cost function J(U ∗(t), V ∗(t))

is minimal, there must be lim
t→∞U(t) = U ∗ and lim

t→∞V (t) = V ∗. Then the result

follows from that of 3).
Theorem 2 shows that, starting from an initial condition in ,, a critical solution

of (4.2) and (4.3) can be obtained by integrating the differential equations using any
numerical packages such as Matlab. Theorem 2 guarantees that the cost function
J(U, V ) decreases monotonically and converges to a minimal value. It is also
shown that if the cost function has only isolated minimum points, the solution
(U(t), V (t)) will converge to one of them.

For a given stable N-periodic system � satisfying ‖Ak‖ < 1 for k � 0,
we summarize the gradient flow algorithm for the H2 model reduction based on
Theorem 2 as follows.
1. Obtain the lifted system of � in the form (2.19)–(2.20);
2. Choose (U(0), V (0)) ∈ , and specify a time duration tf for integration;
3. Obtain Rj and Sj for j ∈ [0, N − 1] as given in (3.28), which are functions of

U and V ;
4. Integrate the ODEs (4.2) and (4.3);
5. If the final cost J(U(tf ), V (tf )) is not satisfactory, set (U(0), V (0)) =

(U(tf ), V (tf )) and repeat Step 3.

4.2. THE DISCRETE ITERATIVE ALGORITHM

This subsection gives a discrete iterative algorithm for solving the ODEs (4.2) and
(4.3). This is to meet the need of digital computation and implementation for the
model reduction. Let

5j(k) = Uj(k)R
T
j − RjUj(k)

T , 6j(k) = Vj(k)S
T
j − SjVj (k)

T (4.8)

and define the following iterations:

Uj(k + 1) = etk5j (k)Uj (k), Vj(k + 1) = etk6j (k)Vj (k),

j = 0, 1 · · · , N − 1
(4.9)

where tk is a step-size to be chosen. We show in the following theorem that (4.9)
can be used to iteratively compute the gradient flow (4.2) and (4.3).
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THEOREM 3. There exists a constant c such that for a step-size tk with 0 <

tk < c and for an initial condition (U(0), V (0)) ∈ ,, U(k) and V (k) recursively
computed from the equations (4.9) satisfy the following properties.
1. (U(k), V (k)) ∈ , for any k > 0.
2. The value of J(U(k), V (k)) decreases monotonically as k increase, i.e.

J(U(k + 1), V (k + 1)) � J(U(k), V (k)), ∀k � 0

where the equality holds if and only if a critical point is reached, i.e.
Mj(U(k), V (k)) = 0 with Mj(·, ·) as in (4.5).

3.

lim
k→∞Mj(U(k), V (k)) = 0, j ∈ [0, N − 1]

or equivalently

lim
k→∞

[
Uj(k)R

T
j − RjUj(k)

T
] = 0, lim

k→∞
[
V (k)STj − SjV (k)

T
] = 0,

j ∈ [0, N − 1]
Proof: 1) Observed from (4.8) that �j(k) and 6j(k) are skew-symmetric.

Thus the matrices etk�j (k) and etk6j (k) are orthogonal for any tk. It follows that
(U(k), V (k)) ∈ , if (U(0), V (0)) ∈ ,.

2) Let

Uj(t) = et5j (k)Uj (k), Vj (t) = et6j (k)Vj (k)

andRj(t) and Sj (t) be the corresponding Rj and Sj as in (3.28). Clearly, (U(0), V (0)) =
(U(k), V (k)), Rj(0) = Rj(k) and Sj (0) = Sj (k). By the Taylor expansion, there
exists a θ ∈ [0, t] such that

J(U(t), V (t)) − J(U(k), V (k)) = tJ̇(U(0), V (0)) + t2

2
J̈(U(θ), V (θ))

(4.10)

It can be seen from (A.21) that

J̇(U(t), V (t)) = 2
N−1∑
j=0

tr
(
RT
j U̇j + STj V̇j

)

= 2
N−1∑
j=0

tr
(
RT
j 5j (k)Uj + STj 6j(k)Vj

)
(4.11)

and

J̈(U(t), V (t)) = 2
N−1∑
j=0

tr
(
ṘT
j 5j (k)Uj + RT

j 5j (k)
2Uj

+ṠTj 6j(k)Vj + Sj6j(k)
2Vj

) (4.12)
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By observing that 5j(k)
T = −5j(k), 6j(k) = −6j(k)

T and using (4.9), it can
be shown that

J̇(U(0), V (0)) = −
N−1∑
j=0

{
tr(5j(k)

T 5j (k))+ tr(6j(k)
T6j(k))

}

= −
N−1∑
j=0

(‖5j(k)‖2
F + ‖6j(k)‖2

F )

(4.13)

Further, we have

|J̈(U(t), V (t))| � 2 (‖ Ṙj‖F‖5j(k)‖F + ‖Rj‖F‖5j(k)
2‖F

+‖Ṡj‖F‖6j(k)‖F + ‖Sj‖F‖6j(k)
2‖F

) (4.14)

Similar to the proof of Theorem 4.1 in [29], it can be shown that there exist positive
constants αj , βj , γj and τj such that, for j ∈ [0, N − 1],

‖Rj‖F � αj , ‖Sj‖F � γj , ‖Ṙj‖F � βj‖|�j(k)‖F ,
‖Ṡj‖F � τj‖|6j(k)‖F (4.15)

Therefore, it then follows that

|J̈(U(t), V (t))| � 2
N−1∑
j=0

(
αj‖5j(k)‖2

F + βj‖5j(k)‖2
F + γj‖6j(k)‖2

F

+τj‖6j(k)‖2
F

) (4.16)

Hence, it is obtained from (4.10), (4.13) and (4.16) that

J(U(t), V (t)) − J (Uk, Vk)

�
N−1∑
j=0

{[−t + (
αj + βj

)
t2
] ‖5j(k)‖2

F + [−t + (
γj + τj

)
t2
] ‖6j(k)‖2

F

}
(4.17)

Let

c = min

{
1

αj + βj
,

1

γj + τj
, j = 0, 1, · · · , N − 1

}

It is obvious that when t ∈ (0, s), J(U(t), V (t)) � J(U(k), V (k)), i.e. J(U(k +
1), V (k + 1)) � J(U(k), V (k)).

3) Take a step-size tk ∈ (0, c). It follows from (4.17) that

N−1∑
j=0

(‖5j(k)‖2
F + ‖6j(k)‖2

F

)
� J(U(k), V (k)) − J(U(k + 1), V (k + 1))

d

(4.18)
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where

d = tk − 1

c
t2
k > 0

Taking the limit on the both sides of (4.18), we have

lim
k→∞

5j(k) = lim
k→∞

6j(k) = 0

Note that

(I − Uj(k)Uj(k)
T )Rj (k)

= [
I − Uj(k)Uj(k)

T
] [
Rj(k)Uj(k)

T − Uj(k)Rj(k)
T
]
Uj(k)

(I − Vj(k)Vj (k)
T )Sj (k)

= [
I − Vj(k)Vj (k)

T
] [
Sj (k)Vj (k)

T − Vj(k)Sj(k)
T
]
Vj(k)

Then it is follows from (4.5) that Mj(U(k), V (k)) = 0 if and only if 0k = 0 and
6k = 0. This completes the proof.

By appropriately choosing a constant step-size tk < c, Theorem 3 guarantees
that the H2 cost function J(U(k), V (k)) obtained from iterative computation of
U(k) and V (k) by (4.9) converges to a minimal value. A procedure for the iterative
computation is given as follows.

1. Obtain the lifted system of � in the form (2.19)-(2.20);

2. Choose (U(0), V (0)) ∈ , and choose an appropriate step-size tk;

3. Obtain Rj and Sj for j ∈ [0, N − 1] as given in (3.28), which are functions of
U and V ;

4. Compute (U(k+1), V (k+1)) from (U(k), V (k)) by using (4.9) and (4.8) until
‖5j(k)‖ < ε and ‖6j(k)‖ < ε, j ∈ [0, N − 1], are satisfied for a specified
tolerance ε > 0.

5. Examples

In this section we apply the discrete iterative algorithm for periodic system model
reduction to two examples. The first example is for model reduction of a periodic
system with a constant order and the second example is for a periodic system with
a time varying order. The results obtained from the continuous time algorithm are
similar and omitted.
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Example 1
Consider a fourth order two-periodic system in the form (2.1)-(2.2) with

A0 =




0.953 0.140 0.000 0.000
−0.140 0.953 0.000 0.000

0.000 0.000 0.447 0.714
0.000 0.000 −0.714 0.447


 , B0 =




0.300 0.000
0.500 −0.300
0.150 0.000
0.000 0.200


 ,

C0 =
[

0.500 −0.400 0.500 0.300
0.000 0.000 0.400 0.300

]
, D0 =

[
0.500 0.000
0.000 0.500

]
,

A1 =




−0.600 0.100 0.000 0.300
−0.300 −0.700 0.000 0.000

0.580 0.000 0.400 0.300
0.100 0.000 −0.600 −0.400


 , B1 =




0.200 0.000
0.000 0.200

−0.300 0.500
0.000 0.400


 ,

C1 =
[

0.400 −0.200 0.000 0.000
0.100 0.200 0.000 0.500

]
, D1 =

[
0.600 0.000
0.000 0.600

]

It can be easily shown that this system satisfies ‖A0‖ < 1 and ‖A1‖ < 1.
Therefore, we can apply the iterative algorithm directly. Our aim is to find a second
order periodic model to approximate the above periodic system. Take the following
initial condition

U0 = V0 = U1 = V1 =
[
I2×2

02×2

]

and choose the step-size to be tk = 0.01. The cost evolution of the iterative al-
gorithm is shown in Figure 1, which shows that the cost function decreases mono-
tonically from 0.634 to 0.317. The projection matrices U0, V0, U1 and V1 converge
to

U0 =




0.9946 −0.0037
−0.0035 0.9646
−0.0745 0.1280

0.0717 0.2307


 , V0 =




0.3527 0.0963
0.3366 0.9087
0.6544 −0.3685
0.5780 −0.1707


 ,

U1 =




0.6643 0.1119
0.2103 0.8681
0.5108 −0.4832
0.5036 −0.0200


 , V1 =




0.9915 −0.0101
0.0182 0.9762
0.1090 0.0602

−0.0687 0.2083
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Figure 1. The cost evolution of Example 1.

As a result, the reduced order periodic model in the form (2.17)-(2.18) is obtained
as

Â0 =
[

0.3127 0.2496
0.3025 0.8279

]
, B̂0 =

[
0.2855 0.0154
0.5004 −0.2432

]
,

Ĉ0 =
[

0.5423 −0.5508
0.4352 −0.1986

]
, D0 =

[
0.5000 0.0000
0.0000 0.5000

]
,

Â1 =
[ −0.1366 −0.0521

−0.6281 −0.6086

]
, B̂1 =

[ −0.0204 0.4989
0.1673 −0.0760

]
,

Ĉ1 =
[

0.3930 −0.1993
0.0685 0.2984

]
, D1 =

[
0.6000 0.000
0.000 0.6000

]

Example 2
Consider a two-periodic system with time-varying order n0 = 4 and n1 = 5 in
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the form (2.1)–(2.2) with

A0 =




0.883 0.140 0.000 0.000
−0.140 0.883 0.000 0.000

0.000 0.000 0.447 0.714
0.000 0.000 −0.714 0.447
0.100 0.200 0.000 0.100


 , B0 =




1.000 0.000
0.500 −0.300
0.150 0.000
0.000 2.000
0.000 0.200


 ,

C0 =
[

0.500 −0.400 1.000 0.300
0.000 0.000 0.400 0.300

]
, D0 =

[
0.500 0.000
0.000 0.500

]

A1 =




−0.500 0.100 0.000 0.300 0.100
−0.200 0.500 0.000 0.000 0.000

0.300 0.000 0.350 0.650 0.100
0.100 0.000 −0.500 −0.300 0.000


 , B1 =




1.500 0.000
0.000 0.200

−0.300 0.500
0.000 0.400




C1 =
[

0.400 −0.200 0.000 0.000 0.000
1.000 0.200 0.000 0.500 0.000

]
, D1 =

[
0.600 0.000
0.000 0.600

]
It is easy to check that ‖A0‖ < 1 and ‖A1‖ < 1. To find a reduced second order

model, we set the initial condition to be

U0 = V1 =
[
I2×2

03×2

]
, U1 = V0 =

[
I2×2

02×2

]
,

and the step-size to be tk = 0.005. Applying the iterative algorithm yields the cost
function evolution as shown Figure 2. It is shown that the cost function is reduced
monotonically from 2.4197 to 0.6477. The projection matrices converge to

U0 =




0.8849 0.3960
0.0594 0.1814
0.0258 0.3217
0.4431 −0.8404
0.1281 0.0226


 , V0 =




0.9630 −0.0242
0.2582 0.2039
0.0313 −0.9785

−0.0708 −0.0176


 ,

U1 =




0.9736 −0.0510
0.1939 0.5071
0.0461 −0.8564
0.1110 −0.0828


 , V1 =




0.8917 0.4210
0.0895 0.1558
0.0126 −0.1709
0.4429 −0.8674
0.0231 −0.1302




The final reduced order periodic model is of the form of (2.17)-(2.18) with

Â0 =
[

0.7831 0.3164
0.4047 −0.6883

]
, B̂0 =

[
0.9185 0.8940
0.5350 −1.7307

]
,

Ĉ0 =
[

0.3883 −1.0775
−0.0087 −0.3967

]
, D0 =

[
0.5000 0.0000
0.0000 0.5000

]
,

Â1 =
[ −0.2993 −0.4375

−0.5296 0.4256

]
, B̂1 =

[
1.4466 0.1062
0.1804 −0.3599

]
,

Ĉ1 =
[

0.3388 0.1372
1.1311 0.0185

]
, D1 =

[
0.6000 0.000
0.000 0.6000

]
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Figure 2. The cost evolution of Example 2.

The above two examples clearly demonstrate the effectiveness of the proposed
periodic model reduction algorithms. It should be noted that our algorithm only
gives a local minimum solution. The gap between the resulting local minimum
and the global minimum depends on the choice of the initial condition. As a sens-
ible choice, one may start from a reduced order model given by the Hankel-norm
aproximation in [28].

6. Conclusion

In this paper, analysis and computational algorithms are presented for the H2 op-
timal order reduction for linear periodic discrete time systems and digital filters.
The order of the discrete time system or digital filter is allowed to be time-varying.
By converting the periodic model reduction problem into an unconstrained optim-
ization problem over the Stiefel manifold, two convergent algorithms based on the
continuous and discrete gradient flows have been developed. It has been shown
that both algorithms guarantee the cost function to decrease monotonically and,
hence, converge to the optimal value. The optimality and convergence properties
are demonstrated by two numerical examples.

Appendix (Proof of Theorem 1)
Let D be the Fréchet derivative operator such that DU = ξ and DV = η. Since

P , Q, Fc, Gc, Hc, Ec, J1(U, V ) and J2(U, V ) are all differentiable functions of
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(U, V ), their Fréchet derivatives can be written, respectively, as

DP = DP(ξ, η), DQ = DQ(ξ, η), DFc = DFc(ξ, η),

DGc = DGc(ξ.η), DHc = DHc(ξ, η)

DJ1 = DJ1(ξ, η), DJ2 = DJ2(ξ, η)

Taking the Fréchet derivative of (3.12) yields

(DFc)PF
T
c + FcP (DFT

c ) + Fc(DP)FT
c − (DP)

+ (DGc)G
T
c + Gc(DGT

c ) = 0
(A.1)

Multiplying (A.1) by Q and taking the trace give

tr[2(DFc)PF
T
c Q + Fc(DP)FT

c Q − (DP)Q + 2(DGc)G
T
c Q] = 0

i.e.

tr
[
2(DFc)PF

T
c Q + FT

c QFc(DP) − Q(DP) + 2(DGc)G
T
c Q

] = 0

This, together with (3.13), implies that

tr[HT
c Hc(DP)] = tr

[
2(DFc)PF

T
c Q + 2(DGc)G

T
c Q

]
(A.2)

Thus the Fréchet derivative of J1(U, V ) is given by

(DJ1) = 2tr
[
PHT

c (DHc)
] + tr

[
HT

c Hc(DP)
]

= 2tr
[
PHT

c (DHc)
] + 2tr

[
(DFc)PF

T
c Q + (DGc)G

T
c Q

]
= 2tr

[
PHT

c (DHc) + (DFc)PF
T
c Q + (DGc)G

T
c Q

]
(A.3)

It is also simple to show that

DJ2 = 2tr{(Ê0 − E0)
T (DÊ0)} (A.4)

Recall that

F̂0 = �̂N,0 = �̂N,j+1U
T
j AjVj�̂j,0, j ∈ [0, N − 1] (A.5)

Ĝ0 = [Ĝ00 Ĝ01 Ĝ02 · · · Ĝ0(N−1)], (A.6)

G0j = �̂N,j+1B̂j

= �̂N,k+1U
T
k AkVk�̂k,j+1B̂j ,

j ∈ [0, N − 1], k ∈ [j + 1, N − 1] (A.7)

Ĥ0 =




Ĥ00

Ĥ01
...

Ĥ0(N−1)


 , (A.8)

Ĥ0j = CjVj�̂j,0 = CjVj�̂j,k+1U
T
k AkVk�̂k,0,

j ∈ [0, N − 1], k ∈ [0, j − 1] (A.9)
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It follows that

DF̂0 =
N−1∑
j=0

�̂N,j+1(ξ
T
j AjVj + UT

j Ajηj )�̂j,0 (A.10)

DĜ0j =
N−1∑
k=j+1

�̂N,k+1
(
ξTk AkVk + UT

k Akηk
)
�̂k,j+1B̂j

+ �̂N,j+1ξ
T
j Bj (A.11)

DĤ0j = Cjηj �̂j,0 +
j−1∑
k=0

CjVj�̂j,k+1
(
ξTk AkVk + UT

k Akηk
)
�̂k,0 (A.12)

Using (A.10)–(A.12), we obtain

tr[(DFc)PF
T
c Q]

= tr


[0 I ]PFT

c Q

[
0
I

] N−1∑
j=0

�̂N,j+1
(
ξTj AjVj + UT

j Ajηj
)
�̂j,0




=
N−1∑
j=0

tr

{
�̂T

N,j+1[0 I ]QFcP

[
0
I

]
�̂T

j,0V
T
j A

T
j ξj

+�̂j,0[0 I ]PFT
c Q

[
0
I

]
�̂N,j+1U

T
j Ajηj

}

=
N−1∑
j=0

tr
(
RT

1jξk + ST1jηk
)

tr
[
(DGc)G

T
c Q

]
= tr

([
0
I

]
DĜ0G

T
c Q

)

= tr


[

0
I

] N−1∑
j=0

DĜ0jG
T
cjQ
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= tr



[

0
I

] N−1∑
j=0

N−1∑
k=j+1

�̂N,k+1
(
ξTk AkVk + UT

k Akηk
)
�̂k,j+1B̂jG

T
cjQ

+
[

0
I

] N−1∑
j=0

�̂N,j+1ξ
T
j BjG

T
cjQ




= tr




N−1∑
j=1

j∑
k=1

[
0
I

]
�̂N,j+1

(
ξTj AjVj + UT

j Ajηj
)
�̂j,kB̂k−1G

T
c(k−1)Q

+
N−1∑
j=0

[
0
I

]
�̂N,j+1ξ

T
j BjG

T
cjQ




=
N−1∑
j=0

tr
(
RT

2jξj + ST2jηj
)

tr
[
PHT

c DHc(X)
]

= tr
(
PHT

c DĤ0[0 − I ]
)

= tr


P

N−1∑
j=0

HT
cjDĤ0j [0 − I ]




= tr


P

N−1∑
j=0

HT
cj

[
Cjηj�̂j,0

+
j−1∑
k=0

CjVj�̂j,k+1
(
ξTk AkVk + UT

k Akηk
)
�̂k,0

]
[0 − I ]

}

= tr




N−2∑
j=0

N−1∑
k=j+1

(
�̂T

k,j+1Ĉ
T
k HckP

[
0

−I

]
�̂T

j,0V
T
j A

T
j ξj

+�̂j,0[0 − I ]PHT
ckĈk�̂k,j+1U

T
j Ajηj

)

+
N−1∑
j=0

�̂j,0[0 − I ]PHT
cjCjηj




=
N−1∑
j=0

tr
(
RT

3jξj + ST3jηj
)
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Substituting these into (A.3) yields

DJ1 = 2tr




N−1∑
j=1

3∑
l=1

(
RT
lj ξj + Sljηj

) (A.13)

We now proceed to derive DJ2(ξ, η). Note that

J2(U, V ) =
N−1∑
k=1

N−1∑
j=k

tr

[(
Cj�j,kBk−1 − Ĉj �̂j,kB̂k−1

)T
(
Cj�j,kBk−1 − Ĉj �̂j,kB̂k−1

)]
Thus,

DJ2(ξ, η)

= 2
N−1∑
k=1

N−1∑
j=k

tr
{
0T
jkD

(
CjVj�̂j,kU

T
k−1Bk−1

)}

= 2
N−1∑
k=1




N−1∑
j=k

tr
(
�̂j,kB̂k−10

T
jkCjηj + �̂T

j,kĈ
T
j 0jkB

T
k−1ξk−1

)
+ hk


(A.14)

where

hk =
N−1∑
j=k+1

j−1∑
l=k

tr
{
0T
jkĈj �̂j,l+1

(
ξTl AlVl + UT

l Alηl
)
�̂l,kB̂k−1

}
(A.15)

By exchanging the summation indices, it can be easily shown that

hk =
N−2∑
j=k

N−1∑
l=j+1

tr
{
0T
lkĈl�̂l,j+1

(
ξTj AjVj + UT

j Ajηj
)
�̂j,kB̂k−1

}

=
N−2∑
j=k

tr
(
Y T
kj ξj + ZT

kjηj
)

and
N−1∑
k=1

hk =
N−2∑
j=1

N−1∑
k=1

tr
(
Y T
kj ξj + ZT

kjηj
)

(A.16)

where

Ykj =
N−1∑
l=j+1

AjVj�̂j,kB̂k−10
T
lkĈl�̂l,j+1 (A.17)

Zkj =
N−1∑
l=j+1

AT
j Uj�̂

T
l,j+1Ĉ

T
l 0lkB̂

T
k−1�̂

T
j,k (A.18)
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It can be further verified that

N−1∑
k=1

N−1∑
j=k

tr
(
�̂j,kB̂k−10

T
jkCjηj

)
=

N−1∑
j=1

j∑
k=1

tr
(
�̂j,kB̂k−10

T
jkCjηj

)
(A.19)

N−1∑
k=1

N−1∑
j=k

tr
(
�̂T

j,kĈ
T
j 0jkB

T
k−1ξk−1

)
=

N−2∑
j=0

N−1∑
k=j+1

tr
(
�̂T

k,j+1Ĉ
T
k 0k(j+1)B

T
j ξj

)
(A.20)

It follows that

DJ2(ξ, η) = 2
N−1∑
j=0

tr
(
RT

4j ξj + ST4jηj
)

This, together with (A.13) yields

DJ(ξ, η) = 2tr




N−1∑
j=0

(
RT
j ξj + Sjηj

) (A.21)

where Rj = R1j + R2j + R3j + R4j and Sj = S1j + S2j + S3j + S4j .
The gradient ∇JV (U, V ) as defined in (3.16) satisfies the following conditions.

∇J(U, V ) ∈ T(U,V ),, ∀(U, V ) ∈ , (A.22)

DJ(ξ, η) =< ∇J(U, V ), (ξ, η) >, ∀(ξ, η) ∈ T(U,V ), (A.23)

In view of (A.21), condition (A.23) is equivalent to

N−1∑
j=0

[∇JUj
(U, V ) − 2Rj

]T
ξj +

N−1∑
j=0

[∇JVj (U, V ) − 2Sj
]T

ηj = 0,

∀(ξ, η) ∈ T(U,V ),

(A.24)

Further, it can be easily verified that

T(U,V ),
⊥ = (U0B0, U1B1, · · · , U(N−1)BN−1;V0C0, V1C1, · · · , VN−1CN−1)

whereBj ∈ Rn̂j+1×n̂j+1 ,Cj ∈ Rn̂j×n̂j and Bj = BT
j , Cj = CT

j , j = 0, 1, · · · , N−
1. This, together with (A.24) implies

∇JUj
(U, V ) = 2Rj − UjBj, ∇JVj (U, V ) = 2Sj − VjCj

Condition (A.22) uniquely determines that

Bj = RT
j Uj + UT

j Rj , Cj = STj Vj + V T
j Sj
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Hence Theorem 1 is established.
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